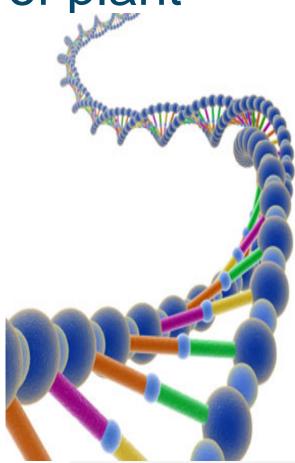
Canadian Food Agence canadienne Inspection Agency d'inspection des aliments

EUPHRESCO P-172: Next Generation Sequencing Proficiency testing of virus infected grapevine and fruit trees.

NGS technologies workshop, Bari, 2017

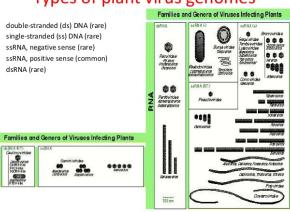

- Kickoff meeting of participants of EUPHRESCO P-172, late 2016, Braunschweig.
- Decision was made that there was enough experience within the group working with viruses infecting grapevine and fruit trees to warrant undertaking a limited proficiency trial.
- 13-14 laboratories from 11 countries agreed to take part in the trial:

Adrian Fox	Fera	UK	
Christina Varveri	BPI	Greece	
Denis Kutnjak	NIB	Slovenia	
Hano Maree	U. Stellenbosch	South Africa	
Heiko Zeibell	JKI	Germany	
Jan Kreuze	CIP	Peru	
Kris De Jonghe	ILVO	Belgium	
Maher Al Rwahnih	U. California	USA	
Marcel Westenberg	NVWA	Netherlands	
Michael Rott	CFIA	Canada	(Robert Hanner, BOL, Canada)
Thierry Candresse	INRA	France	
Pascal Gentit	ANSES	France	
Wilhelm Jelkmann	JKI	Germany	

NGS for the detection of plant viruses

- Detection of the plant virome
- Detection of plant viruses
- Detection on "novel" disease agents
- Detection of known viruses causing disease

wet lab vs dry lab


Can NGS reliably detect known viruses in infected plant material?

Criteria

1) Starting material:

- Plants infected with viruses that have been well characterized
- Single and mixed infections
- Known virus species and number of species present
- Known number of species genotypes
- Complete virus sequences available
- Range of viral genomes
 - Monopartite, multipartite
 - RNA (single-stranded positive sense RNA, single-stranded negative sense RNA, double stranded RNA)
 Types of plant virus genomes
 - DNA (single-stranded DNA, double stranded DNA

Criteria

2) Viral nucleic acid extraction:

a) total RNA extraction/ ribosomal depletion

- (mix of plant/ viral/microbial RNAs)
- b) Small RNAs
 - siRNA
- c) Double stranded RNA
 - viral and viral intermediate

3) Sequencing:

a) Library construction

(preparation of viral nucleic acid for sequencing)

- dependant of type of nucleic acid extract
- dependent on type of sequencer
- b) Sequencer?
- c) Reads
 - number
 - length

To be determined by the individual lab: based on lab developed protocols

Criteria

4) Data analysis:

- Multiple strategies, algorithms and settings possible
 - Most groups have developed their own workflows
 - Compare sequence data from a sample with known virus genomes or virus motifs
 - Each group provided with the viral sequences present in each sample
- Compare results for the different workflows
 - Standard worksheet provide for metadata collection
- Standardize data from all participants using one of two workflows
 - Submission of raw sequence data
 - VirusDetect http://virusdetect.feilab.net/cgi-bin/virusdetect/index.cgi
 - Virtool www.virtool.ca

Samples

- Two samples sets consisting of 6 samples
 - Grapevine sample set
 - Tree fruit sample set
 - Wach sample previously characterized for viruses
 - Range of genome types
 - Single stranded positive sense RNA
 - Single stranded negative sense RNA
 - Double stranded RNA
 - ssDNA
- Participants could choose one or both sets

Sample Preparation

- Leaf material collected June 2017
 - 20 accessions from the CFIA positive collection, previously characterized using NGS
 - Leaf material freeze-dried and aliquoted into 15ml falcon tubes,
 - 0.5g dried material/tube ca. 3-5g fresh weight/tube
 - dsRNA was extracted from one complete set of aliquots and analyzed by NGS
 - Total RNA was extracted from the same aliquots, selected extracts tested for specific viruses by PCR for CVA, ACLSV, GRSPaV,CV_TF1, GV_TF1, ARWV, GLRaV.
 - Total of 12 samples selected and shipped to participants in August.
 - Complete viral sequence sent to participants in September

Accessions

Sample ID	Host	Viruses	Genomes	Sample set
VT1	Cherry	ACLSV, CGRMV, CNRMV, CTLaV, CVA, PDV, PNRSV	ss +RNA, ss - RNA, ssDNA	Tree Fruit
VT2	Apple	ASPV, ASGV, ACLSV	Multiple genotypes monopartite, multipartite	
VT3	Apple	ACLSV, ASPV, ARWV-1, ARWV-2	14 virus species Trichvirus	
VT5	Apricot	CVA, GV_TF1	Ampelovirus	
VT6	Plum	PBNSPaV	Capillovirus Illarvirus Foveavirus	
VT18	Peach	PcMV	Unclassified Bunyavirus Unclassified Geminivirus	
VT8	Grape	GVB, GVA, GLRaV2, GRSPaV, GFkV, HSVd	ss +RNA, ssDNA, dsDNA	
VT9	Grape	GLRaV4, GRBaV, GLRaV1, GLRaV2, GRSPaV, HSVd, GYSVd	Multiple genotypes mono and mutipartite 14 virus species Badnavirus Vitivirus Closterovirus Ampelovirus Foveavirus	Grapevine
VT11	Grape	RpRSP, GRSPaV, HSVd		
VT13	Grape	TBRV		
VT16	Grape	GVA, GVB, GVD, GVF, GLRaV3, HSVd, GYSVd		
VT17	Currant	GVBaV, CV-TF1	Macularvirus nepovirus Unclassified Geminivirus	

Preliminary results (CLCBio)

- dsRNA extract
- Illumina 75H single read

Grapevine Samples

Sample	Virus	reads	%coverage
VT8	GVB	3,2440	100
	GLRaV2	1,185,575	99.9
	GRSPaV	572,717	99.8
(7.6M reads)	HSVd	3,227	99.7
	GLRaV3	33,153	99.1
	GFkV	1,911	73.6
	GVA	11,992	99.7
	GLRaV4	1,798,071	100
	GLRaV1	15,440	99.9
VT9	GYSVd	4,060	99.7
(15M reads)	HSVd	6,342	99.7
	GLRaV2	7,175	99.7
	GRSPaV	5,330	99.4
	GRSPaV	10,719,762	100
VT11	HSVd	9,505	99.7
(32M reads)	RpRSV	1,6052	99.7
	ASGV	2,961	93.8
	TBRV	52,288	90.9
VT13	GLRaV1	796	93.5
(11M reads)	GLRaV2	1,616	92.3
	GRSPaV	477	83.8
	GLRaV4	468	77.2
	GVB	8,353	99.9
VT16	GYSVd	683	99.7
	HSVd	2,020	99.7
(6.1M reads)	GVF	4,952	98.1
	GVA	6,617	97.6
	GVD	2,691	88.9
	GLRaV3	7,492	97.1
VT17	CV_TF1	73,735	99.5
(1.9M reads)	GVBaV	358	61.7

Preliminary results: 2 lab results Tree fruit Samples

1) dsRNA extraction

2) Total RNA extraction ribosomal depletion Illumina sequencing

CLCbio workflows

		dsRNA extraction		Total RNA extraction			
Sample	Virus	total reads			total reads		
		(single 75)	reads	% coverage	(paired 150)	reads	% coverage
	CTLaV		6,633,670	100		179,200	99
	CVA		12,695,237	100		851,151	100
	PNRSV		287,469	100		17,110	97
VT1	PDV	32 M	1,150,260	99.9	6.6M	151,445	99
	ACLSV		126,709	99.9		3,197	87
	CGRMV		922,884	99.6		30,631	
	CNRMV		205,795	99.6		20,994	99
	ASGV		6,021,067	100		3,606	79
VT2	ASPV	27M	22,057	95.7	12M	-	
	ACLSV	1	67,372	71.2		-	
	ASPV		308,084	100		10,138	80
VT3	ACLSV	10M	306,398	99.9	14M	8,851	93
	ARWV2		42,173	99.9		-	
	ARWV1		27,046	99.8		-	
VT5	CVA	8.6M	2,331,103	100	12M	31,104	100
	GV_TF1		7,717	97.2		-	
VT6	PBNSPV	2M	227,797	99.9	12M	-	
VT18	PcMV	23M	2,388,227	100	23M	308,801	100

Ongoing

- Trial delayed
 - Sample preparation and shipping took longer than planned.
- All participating laboratories currently in various stages of sample processing/ data analysis
- Expect results and data over the next couple months
- Final data results/presentation/discussion by next EUPHRESCO P-172 meeting
- Publication 2018

Preliminary results (CLCBio)

- dsRNA extract
- Illumina 75H single read
- 24 samples/run (12 shown)

Fruit Tree Samples

Sample	Virus	reads	%coverage
VT1	CTLaV	6633670	100
(32M reads)	CVA	12695237	100
~ /	PNRSV	287469	100
	PDV	1150260	99.9
	ACLSV	126709	99.9
	CGRMV	922884	99.6
	CNRMV	205795	99.6
VT2	ASGV	6021067	100
(27M reads)	ASPV	22057	95.7
	ACLSV	67372	71.2
VT3	ARWV1	308084	100
(10M reads)	ACLSV	306398	99.9
	ARWV2	42173	99.9
	ASPV	27046	99.8
VT5	CVA	2331103	100
(8.6M reads)	GV_TF1	7717	97.2
VT6	PBNSPV	227797	99.9
(2.0M reads)			
VT18	PcMV	2388227	100
(23M reads)			

Grapevine Samples

Sample	Virus	reads	%coverage
VT8	GVB	32440	100
(7.6M reads)	GLRaV2	1185575	99.9
(7.6W reads)		572717	
	GRSPaV		99.8
	HSVd	3227	99.7
	GLRaV3	33153	99.1
	GFkV	1911	73.6
۱/ Т о	GVA	11992	99.7
VT9	GLRaV4	1798071	100
(15M reads)	GLRaV1	15440	99.9
	GYSVd	4060	99.7
	HSVd	6342	99.7
	GLRaV2	7175	99.7
	GRSPaV	5330	99.4
VT11	GRSPaV	10719762	100
(32M reads)	HSVd	9505	99.7
	RpRSV	16052	99.7
	ASGV	2961	93.8
VT13	TBRV	52288	90.9
(11M reads)	GLRaV1	796	93.5
	GLRaV2	1616	92.3
	GRSPaV	477	83.8
	GLRaV4	468	77.2
VT16	GVB	8353	99.9
(6.1M reads)	GYSVd	683	99.7
	HSVd	2020	99.7
	GVF	4952	98.1
	GVA	6617	97.6
	GVD	2691	88.9
	GLRaV3	7492	97.1
VT17	CV TF1	73735	99.5
(1.9M reads)	GVBaV	358	61.7
(0.001	000	0111